load_bace#

skfp.datasets.moleculenet.load_bace(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray#

Load and return the BACE dataset.

The task is to predict binding results for a set of inhibitors of human β-secretase 1 (BACE-1) [1] [2].

Tasks

1

Task type

classification

Total samples

1513

Recommended split

scaffold

Recommended metric

AUROC

Parameters:
  • data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If None, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.

  • as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).

  • verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.

Returns:

data – Depending on the as_frame argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)

Return type:

pd.DataFrame or tuple(list[str], np.ndarray)

References

Examples

>>> from skfp.datasets.moleculenet import load_bace
>>> dataset = load_bace()
>>> dataset  
(['O1CC[C@@H](NC(=O)[C@@H](Cc2cc3cc(ccc3nc2N)-c2ccccc2C)C)CC1(C)C', ..., 'Clc1cc2nc(n(c2cc1)CCCC(=O)NCC1CC1)N'], array([1, 1, 1, ..., 0, 0, 0]))
>>> dataset = load_bace(as_frame=True)
>>> dataset.head() 
                                              SMILES  label
0  O1CC[C@@H](NC(=O)[C@@H](Cc2cc3cc(ccc3nc2N)-c2c...      1
1  Fc1cc(cc(F)c1)C[C@H](NC(=O)[C@@H](N1CC[C@](NC(...      1
2  S1(=O)(=O)N(c2cc(cc3c2n(cc3CC)CC1)C(=O)N[C@H](...      1
3  S1(=O)(=O)C[C@@H](Cc2cc(O[C@H](COCC)C(F)(F)F)c...      1
4  S1(=O)(=O)N(c2cc(cc3c2n(cc3CC)CC1)C(=O)N[C@H](...      1