USRFingerprint#
- class skfp.fingerprints.USRFingerprint(errors: str = 'raise', n_jobs: int | None = None, batch_size: int | None = None, verbose: int = 0)#
USR (Ultrafast Shape Recognition) fingerprint.
The implementation uses RDKit. This is a descriptor-based fingerprint, which characterizes the shape of the molecule by encoding the relative positions of its atoms [1] [2].
Four points are considered: molecular centroid (ctd), the closest atom to centroid (cst), the farthest atom from centroid (fct), and atom the fartest from fct (ftf). Distances from all atoms to each of those four points are computed, and each of those distributions is summarized its first three moments: mean, variance, and skewness. Concretely, standard deviation and cubic root of skewness are used to keep the same unit. This results in 12 descriptors.
This is a 3D fingerprint, and requries molecules with
conf_id
integer property set. They can be generated withConformerGenerator
. Furthermore, only molecules with 3 or more atoms are allowed, to allow computation of all three moments.- Parameters:
errors ({"raise", "NaN", "ignore"}, default="raise") – How to handle errors during fingerprint calculation.
"raise"
immediately raises any errors."NaN"
returns NaN values for molecules which resulted in errors."ignore"
suppresses errors and does not return anything for molecules with errors. This potentially results in less output vectors than input molecules, and should be used with caution.n_jobs (int, default=None) – The number of jobs to run in parallel.
transform()
is parallelized over the input molecules.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Scikit-learn documentation onn_jobs
for more details.batch_size (int, default=None) – Number of inputs processed in each batch.
None
divides input data into equal-sized parts, as many asn_jobs
.verbose (int, default=0) – Controls the verbosity when computing fingerprints.
- n_features_out#
Number of output features, size of fingerprints.
- Type:
int = 12
- requires_conformers#
Value is always True, as this fingerprint is 3D based. It always requires molecules with conformers as inputs, with
conf_id
integer property set.- Type:
bool = True
See also
USRCAT
Related fingerprint, which additionally uses pharmacophoric atom types.
ElectroShaoe
Related fingerprint, which additionally uses atomic partial charges.
References
Examples
>>> from skfp.fingerprints import USRFingerprint >>> from skfp.preprocessing import MolFromSmilesTransformer, ConformerGenerator >>> smiles = ["CC=O"] >>> fp = USRFingerprint() >>> fp USRFingerprint()
>>> mol_from_smiles = MolFromSmilesTransformer() >>> mols = mol_from_smiles.transform(smiles) >>> conf_gen = ConformerGenerator() >>> mols = conf_gen.transform(mols) >>> fp.transform(mols) array([[ 1.33723405, 0.39526642, ... , 0.94315243, -0.78539494]])
Methods
fit
(X[, y])Unused, kept for Scikit-learn compatibility.
fit_transform
(X[, y])The same as
.transform()
method, kept for Scikit-learn compatibility.get_feature_names_out
([input_features])Get output feature names for transformation.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, copy])Request metadata passed to the
transform
method.transform
(X[, copy])Compute USR fingerprints.
transform_x_y
(X, y[, copy])Compute USR fingerprints.
- fit(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
Unused, kept for Scikit-learn compatibility.
- Parameters:
X (any) – Unused, kept for Scikit-learn compatibility.
y (any) – Unused, kept for Scikit-learn compatibility.
**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Return type:
self
- fit_transform(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
The same as
.transform()
method, kept for Scikit-learn compatibility.- Parameters:
X (any) – See
.transform()
method.y (any) – See
.transform()
method.**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Returns:
X_new – See
.transform()
method.- Return type:
any
- get_feature_names_out(input_features=None)#
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: [“class_name0”, “class_name1”, “class_name2”].
- Parameters:
input_features (array-like of str or None, default=None) – Only used to validate feature names with the names seen in fit.
- Returns:
feature_names_out – Transformed feature names.
- Return type:
ndarray of str objects
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') USRFingerprint #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
copy
parameter intransform
.- Returns:
self – The updated object.
- Return type:
object
- transform(X: Sequence[str | Mol], copy: bool = False) ndarray | csr_array #
Compute USR fingerprints. If
errors
is set to"ignore"
, then in case of errors less than n_samples values may be returned.- Parameters:
X ({sequence, array-like} of shape (n_samples,)) – Sequence containing RDKit Mol objects, with conformers generated and
conf_id
integer property set.copy (bool, default=False) – Copy the input X or not.
- Returns:
X – Array with fingerprints.
- Return type:
{ndarray, sparse matrix} of shape (n_samples, self.fp_size)
- transform_x_y(X: Sequence[Mol], y: ndarray, copy: bool = False) tuple[ndarray | csr_array, ndarray] #
Compute USR fingerprints. If
errors
is set to"ignore"
, then in case of errors less than n_samples values may be returned. The returned values for X and y are properly synchronized.- Parameters:
X ({sequence, array-like} of shape (n_samples,)) – Sequence containing RDKit Mol objects, with conformers generated and
conf_id
integer property set.y (np.ndarray of shape (n_samples,)) – Array with labels for molecules.
copy (bool, default=False) – Copy the inputs X and y or not.
- Returns:
X ({ndarray, sparse matrix} of shape (n_samples, self.fp_size)) – Array with fingerprints.
y (np.ndarray of shape (n_samples,)) – Array with labels for molecules.