load_freesolv#

skfp.datasets.moleculenet.load_freesolv(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray#

Load and return the FreeSolv (Free Solvation Database) dataset.

The task is to predict hydration free energy of small molecules in water [1] [2]. Targets are in kcal/mol.

Tasks

1

Task type

regression

Total samples

642

Recommended split

scaffold

Recommended metric

RMSE

Parameters:
  • data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If None, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.

  • as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D float vector).

  • verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.

Returns:

data – Depending on the as_frame argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)

Return type:

pd.DataFrame or tuple(list[str], np.ndarray)

References

Examples

>>> from skfp.datasets.moleculenet import load_freesolv
>>> dataset = load_freesolv()
>>> dataset  
(['CN(C)C(=O)c1ccc(cc1)OC', ..., 'C1COCCO1'], array([-1.101e+01, -4.870e+00,  ..., 2.900e-01, -5.060e+00]))
>>> dataset = load_freesolv(as_frame=True)
>>> dataset.head() 
                   SMILES  label
0  CN(C)C(=O)c1ccc(cc1)OC -11.01
1            CS(=O)(=O)Cl  -4.87
2                CC(C)C=C   1.83
3              CCc1cnccn1  -5.45
4                CCCCCCCO  -4.21