load_sarscov2_3clpro_diamond#
- skfp.datasets.tdc.hts.load_sarscov2_3clpro_diamond(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load the SARS-CoV-2 3CL Protease Diamond dataset.
XChem crystallographic fragment screen against SARS-CoV-2 main protease at high resolution [1] [2]. The task is to predict molecules’ activity against SARS-CoV-2 3CL Protease.
Tasks
1
Task type
classification
Total samples
880
Recommended split
scaffold
Recommended metric
AUROC
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References