multioutput_f1_score#
- skfp.metrics.multioutput_f1_score(y_true: ndarray | list, y_pred: ndarray | list, *args, **kwargs) float #
F1 score for multioutput problems.
Returns the average value over all tasks. Missing values in target labels are ignored. Columns with constant true value are also ignored, which differs from default scikit-learn behavior (it returns value 0 by default). Also supports single-task evaluation.
Any additional arguments are passed to the underlying
f1_score
function, see scikit-learn documentation for more information.- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.
*args – Any additional parameters for the underlying scikit-learn metric function.
**kwargs – Any additional parameters for the underlying scikit-learn metric function.
- Returns:
score – Average F1 score value over all tasks.
- Return type:
float
Examples
>>> import numpy as np >>> from skfp.metrics import multioutput_f1_score >>> y_true = [[0, 0], [1, 1]] >>> y_pred = [[0, 0], [0, 1]] >>> multioutput_f1_score(y_true, y_pred) 0.5 >>> y_true = [[0, np.nan], [1, np.nan], [np.nan, np.nan]] >>> y_pred = [[0, 0], [0, 0], [1, 0]] >>> multioutput_f1_score(y_true, y_pred) 0.0