E3FPFingerprint#
- class skfp.fingerprints.E3FPFingerprint(fp_size: int = 1024, n_bits_before_folding: int = 4096, level: int | None = None, radius_multiplier: float = 1.718, rdkit_invariants: bool = False, count: bool = False, sparse: bool = False, n_jobs: int | None = None, batch_size: int | None = None, verbose: int | dict = 0, random_state: int | None = 0)#
E3FP (Extended 3-Dimensional FingerPrint) fingerprint.
The implementation uses
e3fp
library. This is a hashed fingerprint [1], where fragments are computed based on “shells”, i.e. spherical areas around each atom in the 3D conformation of a molecule. The initial vector is quite large, and is then folded to thefp_size
length.Shells are created around each atom with increasing radius, multiplied each time by
radius_multiplier
, untillevel
iterations are reached or when there is no change. Shell of each radius is hashed.Each shells get an identifier based on atom types in their radius, which is then hashed. Atom types (invariants) by default are based on Daylight invariants:
number of heavy neighbors
valence (excluding hydrogen neighbors)
atomic number
atomic mass
formal charge
number of bound hydrogens
whether it is a part of a ring
This is a 3D fingerprint, and requries molecules with
conf_id
integer property set. They can be generated withConformerGenerator
.- Parameters:
fp_size (int, default=1024) – Size of output vectors, i.e. number of bits for each fingerprint. Must be positive.
n_bits_before_folding (int, default=4096) – Size of fingerprint vector after initial hashing. It is then folded to
fp_size
. Must be positive, and larger or equal tofp_size
.level (int, default=None) – Maximal number of iterations with increasing shell radius. None means that it stops only when the is no change from the last iteration.
radius_multiplier (float, default=1.718) – How much to multiply the radius by to get the next, larger shell. Must be greater than 1.
rdkit_invariants (bool, default=False) – Whether to use RDKit ECFP invariants instead of Daylight ones.
count (bool, default=False) – Whether to return binary (bit) features, or their counts.
sparse (bool, default=False) – Whether to return dense NumPy array, or sparse SciPy CSR array.
n_jobs (int, default=None) – The number of jobs to run in parallel.
transform()
is parallelized over the input molecules.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Scikit-learn documentation onn_jobs
for more details.batch_size (int, default=None) – Number of inputs processed in each batch.
None
divides input data into equal-sized parts, as many asn_jobs
.verbose (int or dict, default=0) – Controls the verbosity when computing fingerprints. If a dictionary is passed, it is treated as kwargs for
tqdm()
, and can be used to control the progress bar.random_state (int, RandomState instance or None, default=0) – Controls the randomness of conformer generation.
- n_features_out#
Number of output features, size of fingerprints. Equal to
fp_size
.- Type:
int
- requires_conformers#
Value is always True, as this fingerprint is 3D based. It always requires molecules with conformers as inputs, with
conf_id
integer property set.- Type:
bool = True
See also
ECFPFingerprint
Related 2D fingerprint. E3FP was designed to extend it to 3D features.
References
Examples
>>> from skfp.fingerprints import E3FPFingerprint >>> from skfp.preprocessing import MolFromSmilesTransformer, ConformerGenerator >>> smiles = ["O", "CC", "[C-]#N", "CC=O"] >>> fp = E3FPFingerprint() >>> fp E3FPFingerprint()
>>> mol_from_smiles = MolFromSmilesTransformer() >>> mols = mol_from_smiles.transform(smiles) >>> conf_gen = ConformerGenerator() >>> mols = conf_gen.transform(mols) >>> fp.transform(mols) array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)
Methods
fit
(X[, y])Unused, kept for Scikit-learn compatibility.
fit_transform
(X[, y])The same as
.transform()
method, kept for Scikit-learn compatibility.get_feature_names_out
([input_features])Get output feature names for transformation.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, copy])Request metadata passed to the
transform
method.transform
(X[, copy])Compute E3FP fingerprints.
- fit(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
Unused, kept for Scikit-learn compatibility.
- Parameters:
X (any) – Unused, kept for Scikit-learn compatibility.
y (any) – Unused, kept for Scikit-learn compatibility.
**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Return type:
self
- fit_transform(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
The same as
.transform()
method, kept for Scikit-learn compatibility.- Parameters:
X (any) – See
.transform()
method.y (any) – See
.transform()
method.**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Returns:
X_new – See
.transform()
method.- Return type:
any
- get_feature_names_out(input_features=None)#
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: [“class_name0”, “class_name1”, “class_name2”].
- Parameters:
input_features (array-like of str or None, default=None) – Only used to validate feature names with the names seen in fit.
- Returns:
feature_names_out – Transformed feature names.
- Return type:
ndarray of str objects
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') E3FPFingerprint #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
copy
parameter intransform
.- Returns:
self – The updated object.
- Return type:
object
- transform(X: Sequence[str | Mol], copy: bool = False) ndarray | csr_array #
Compute E3FP fingerprints.
- Parameters:
X ({sequence, array-like} of shape (n_samples,)) – Sequence containing RDKit Mol objects, with conformers generated and
conf_id
integer property set.copy (bool, default=False) – Copy the input X or not.
- Returns:
X – Array with fingerprints.
- Return type:
{ndarray, sparse matrix} of shape (n_samples, self.fp_size)