multioutput_balanced_accuracy_score#
- skfp.metrics.multioutput_balanced_accuracy_score(y_true: ndarray | list, y_pred: ndarray | list, *args, **kwargs) float #
Balanced accuracy (average recall) score for multioutput problems.
Returns the average value over all tasks. Missing values in target labels are ignored. Also supports single-task evaluation.
Any additional arguments are passed to the underlying
balanced_accuracy_score
function, see scikit-learn documentation for more information.- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.
*args – Any additional parameters for the underlying scikit-learn metric function.
**kwargs – Any additional parameters for the underlying scikit-learn metric function.
- Returns:
score – Average balanced accuracy value over all tasks.
- Return type:
float
Examples
>>> import numpy as np >>> from skfp.metrics import multioutput_balanced_accuracy_score >>> y_true = [[0, 0], [1, 1]] >>> y_pred = [[0, 0], [0, 1]] >>> multioutput_balanced_accuracy_score(y_true, y_pred) 0.75 >>> y_true = [[0, np.nan], [1, np.nan], [np.nan, np.nan]] >>> y_pred = [[0, 0], [0, 0], [1, 0]] >>> multioutput_balanced_accuracy_score(y_true, y_pred) 0.5