dice_count_distance#
- skfp.distances.dice_count_distance(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array) float #
Dice distance for vectors of count values.
Computes the Dice distance for count data between two input arrays or sparse matrices by subtracting the Dice similarity [1] [2] [3] from 1, using the formula:
\[dist(vec_a, vec_b) = 1 - sim(vec_a, vec_b)\]The calculated distance falls within the range
[0, 1]
. Passing all-zero vectors to this function results in a distance of 0.- Parameters:
vec_a ({ndarray, sparse matrix}) – First count input array or sparse matrix.
vec_b ({ndarray, sparse matrix}) – Second count input array or sparse matrix.
- Returns:
distance – Dice distance between
vec_a
andvec_b
.- Return type:
float
References
Examples
>>> from skfp.distances import dice_count_distance >>> import numpy as np >>> vec_a = np.array([7, 1, 1]) >>> vec_b = np.array([7, 1, 2]) >>> dist = dice_count_distance(vec_a, vec_b) >>> dist 0.00952380952380949
>>> from skfp.distances import dice_count_distance >>> from scipy.sparse import csr_array >>> vec_a = csr_array([[7, 1, 1]]) >>> vec_b = csr_array([[7, 1, 2]]) >>> dist = dice_count_distance(vec_a, vec_b) >>> dist 0.00952380952380949