dice_count_distance#

skfp.distances.dice_count_distance(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array) float#

Dice distance for vectors of count values.

Computes the Dice distance for count data between two input arrays or sparse matrices by subtracting the Dice similarity [1] [2] [3] from 1, using the formula:

\[dist(vec_a, vec_b) = 1 - sim(vec_a, vec_b)\]

The calculated distance falls within the range [0, 1]. Passing all-zero vectors to this function results in a distance of 0.

Parameters:
  • vec_a ({ndarray, sparse matrix}) – First count input array or sparse matrix.

  • vec_b ({ndarray, sparse matrix}) – Second count input array or sparse matrix.

Returns:

distance – Dice distance between vec_a and vec_b.

Return type:

float

References

Examples

>>> from skfp.distances import dice_count_distance
>>> import numpy as np
>>> vec_a = np.array([7, 1, 1])
>>> vec_b = np.array([7, 1, 2])
>>> dist = dice_count_distance(vec_a, vec_b)
>>> dist
0.00952380952380949
>>> from skfp.distances import dice_count_distance
>>> from scipy.sparse import csr_array
>>> vec_a = csr_array([[7, 1, 1]])
>>> vec_b = csr_array([[7, 1, 2]])
>>> dist = dice_count_distance(vec_a, vec_b)
>>> dist
0.00952380952380949