load_half_life_obach#
- skfp.datasets.tdc.adme.load_half_life_obach(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load the Half Life Obach dataset.
The task is to predict the half life of a drug. It is defined as a duration for the concentration of the drug in the body to be reduced by half. It measures the duration of actions of a drug [1] [2].
This dataset is a part of “excretion” subset of ADME tasks.
Tasks
1
Task type
regression
Total samples
667
Recommended split
scaffold
Recommended metric
Spearman correlation
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References