MolFromSmilesTransformer#
- class skfp.preprocessing.MolFromSmilesTransformer(sanitize: bool = True, replacements: dict | None = None, valid_only: bool = False, n_jobs: int | None = None, batch_size: int | None = None, suppress_warnings: bool = False, verbose: int | dict = 0)#
Creates RDKit
Mol
objects from SMILES strings.For details see RDKit documentation [1].
- Parameters:
sanitize (bool, default=True) – Whether to perform sanitization [1], i.e. basic validity checks, on created molecules.
replacements (dict, default=None) – If provided, will be used to do string substitution of abbreviations in the input SMILES.
valid_only (bool, default=False) – Whether to return only molecules that were successfully loaded. By default, returns
None
for molecules that got errors.n_jobs (int, default=None) – The number of jobs to run in parallel.
transform()
is parallelized over the input molecules.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Scikit-learn documentation onn_jobs
for more details.batch_size (int, default=None) – Number of inputs processed in each batch.
None
divides input data into equal-sized parts, as many asn_jobs
.suppress_warnings (bool, default=False) – Whether to suppress warnings and errors on loading molecules.
verbose (int or dict, default=0) – Controls the verbosity when processing molecules. If a dictionary is passed, it is treated as kwargs for
tqdm()
, and can be used to control the progress bar.
References
Examples
>>> from skfp.preprocessing import MolFromSmilesTransformer >>> smiles = ["O", "CC", "[C-]#N", "CC=O"] >>> mol_from_smiles = MolFromSmilesTransformer() >>> mol_from_smiles MolFromSmilesTransformer()
>>> mol_from_smiles.transform(smiles) [<rdkit.Chem.rdchem.Mol>, <rdkit.Chem.rdchem.Mol>, <rdkit.Chem.rdchem.Mol>, <rdkit.Chem.rdchem.Mol>]
Methods
fit
(X[, y])Unused, kept for Scikit-learn compatibility.
fit_transform
(X[, y])The same as
.transform()
method, kept for Scikit-learn compatibility.Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, copy])Request metadata passed to the
transform
method.transform
(X[, copy])Create RDKit
Mol
objects from SMILES strings.transform_x_y
(X, y[, copy])Create RDKit
Mol
objects from SMILES strings.- fit(X, y=None, **fit_params)#
Unused, kept for Scikit-learn compatibility.
- Parameters:
X (any) – Unused, kept for Scikit-learn compatibility.
y (any) – Unused, kept for Scikit-learn compatibility.
**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Return type:
self
- fit_transform(X, y=None, **fit_params)#
The same as
.transform()
method, kept for Scikit-learn compatibility.- Parameters:
X (any) – See
.transform()
method.y (any) – See
.transform()
method.**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Returns:
X_new – See
.transform()
method.- Return type:
any
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') MolFromSmilesTransformer #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
copy
parameter intransform
.- Returns:
self – The updated object.
- Return type:
object
- transform(X, copy: bool = False) list[Mol] #
Create RDKit
Mol
objects from SMILES strings. Ifvalid_only
is set to True, returns only a subset of molecules which could be successfully loaded.- Parameters:
X ({sequence, array-like} of shape (n_samples,)) – Sequence containing SMILES strings.
copy (bool, default=False) – Unused, kept for Scikit-learn compatibility.
- Returns:
X – List with RDKit
Mol
objects.- Return type:
list of shape (n_samples_conf_gen,)
- transform_x_y(X, y, copy: bool = False) tuple[list[Mol], ndarray] #
Create RDKit
Mol
objects from SMILES strings. Ifvalid_only
is set to True, returns only a subset of molecules and labels which could be successfully loaded.- Parameters:
X ({sequence, array-like} of shape (n_samples,)) – Sequence containing SMILES strings.
y (np.ndarray of shape (n_samples,)) – Array with labels for molecules.
copy (bool, default=False) – Unused, kept for Scikit-learn compatibility.
- Returns:
X (list of shape (n_samples,)) – List with RDKit
Mol
objects.y (np.ndarray of shape (n_samples,)) – Array with labels for molecules.