simpson_binary_distance#
- skfp.distances.simpson_binary_distance(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array) float #
Simpson distance for vectors of binary values.
Computes the Simpson distance for binary data between two input arrays or sparse matrices by subtracting the Simpson similarity [1] [2] [3] [4] from 1, using the formula:
\[dist(a, b) = 1 - sim(a, b)\]See also
simpson_binary_similarity()
. The calculated distance falls within the range \([0, 1]\). Passing all-zero vectors to this function results in a distance of 0.- Parameters:
vec_a ({ndarray, sparse matrix}) – First binary input array or sparse matrix.
vec_b ({ndarray, sparse matrix}) – Second binary input array or sparse matrix.
- Returns:
distance – Simpson distance between
vec_a
andvec_b
.- Return type:
float
References
Examples
>>> from skfp.distances import simpson_binary_distance >>> import numpy as np >>> vec_a = np.array([1, 0, 1]) >>> vec_b = np.array([1, 0, 1]) >>> dist = simpson_binary_distance(vec_a, vec_b) >>> dist 0.0
>>> from scipy.sparse import csr_array >>> vec_a = csr_array([[1, 0, 1]]) >>> vec_b = csr_array([[1, 0, 1]]) >>> dist = simpson_binary_distance(vec_a, vec_b) >>> dist 0.0