Metrics#

Functions for computing model quality metrics.


General metrics:

auroc_score

Area Under Receiver Operating Characteristic curve (AUROC / ROC AUC).

spearman_correlation

Spearman correlation.

Multioutput metrics:

multioutput_accuracy_score

Accuracy score for multioutput problems.

multioutput_auprc_score

Area Under Precision-Recall Curve (AUPRC / AUC PRC / average precision) score for multioutput problems.

multioutput_auroc_score

Area Under Receiver Operating Characteristic curve (AUROC / ROC AUC) score for multioutput problems.

multioutput_balanced_accuracy_score

Balanced accuracy (average recall) score for multioutput problems.

multioutput_cohen_kappa_score

Cohen's kappa score for multioutput problems.

multioutput_f1_score

F1 score for multioutput problems.

multioutput_matthews_corr_coef

Matthews Correlation Coefficient (MCC) for multioutput problems.

multioutput_mean_absolute_error

Mean absolute error (MAE) for multioutput problems.

multioutput_mean_squared_error

Mean squared error (MSE) for multioutput problems.

multioutput_precision_score

Precision score for multioutput problems.

multioutput_recall_score

Recall score for multioutput problems.

multioutput_root_mean_squared_error

Root mean squared error (RMSE) for multioutput problems.

multioutput_spearman_correlation

Spearman correlation for multioutput problems.

Virtual screening metrics:

bedroc_score

Boltzmann-enhanced discrimination of ROC (BEDROC).

enrichment_factor

Enrichment factor (EF).

rie_score

Robust Initial Enhancement (RIE).

Utility functions:

extract_pos_proba

Extract positive class probabilities (y-score).