load_herg_central_at_10um#

skfp.datasets.tdc.tox.load_herg_central_at_10um(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray#

Load the 10 µM subset of hERG Central dataset.

The task is to predict the inhibition of ether-à-go-go related gene (hERG), crucial for coordination of the heart’s beating [1] [2].

In this subset, the task is predicting percent inhibition at 10 µM concentration.

Tasks

1

Task type

regression

Total samples

306893

Recommended split

scaffold

Recommended metric

MAE

Parameters:
  • data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If None, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.

  • as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).

  • verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.

Returns:

data – Depending on the as_frame argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)

Return type:

pd.DataFrame or tuple(list[str], np.ndarray)

References