load_ppbr_az#
- skfp.datasets.tdc.adme.load_ppbr_az(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load the PPBR (Plasma Protein Binding Rate) AstraZeneca dataset.
The task is to predict human plasma protein binding rate (PPBR) [1] [2]. PPBR is expressed as the percentage of a drug bound to plasma proteins in the blood. This rate strongly affects the drug delivery efficiency. The less bound a drug is, the more efficiently it can traverse and diffuse to the site of actions.
This dataset is a part of “distribution” subset of ADME tasks.
Tasks
1
Task type
regression
Total samples
1614
Recommended split
scaffold
Recommended metric
MAE
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References