load_esol#
- skfp.datasets.moleculenet.load_esol(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load and return the ESOL (Estimated SOLubility) dataset.
The task is to predict aqueous solubility [1] [2]. Targets are log-transformed, and the unit is log mols per litre (log Mol/L).
Tasks
1
Task type
regression
Total samples
1128
Recommended split
scaffold
Recommended metric
RMSE
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D float vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References
Examples
>>> from skfp.datasets.moleculenet import load_esol >>> dataset = load_esol() >>> dataset (['OCC3OC(OCC2OC(OC(C#N)c1ccccc1)C(O)C(O)C2O)C(O)C(O)C3O ', ..., 'COP(=O)(OC)OC(=CCl)c1cc(Cl)c(Cl)cc1Cl'], array([-0.77 , -3.3 , -2.06 , ..., -3.091, -3.18 , -4.522]))
>>> dataset = load_esol(as_frame=True) >>> dataset.head() SMILES label 0 OCC3OC(OCC2OC(OC(C#N)c1ccccc1)C(O)C(O)C2O)C(O)... -0.77 1 Cc1occc1C(=O)Nc2ccccc2 -3.30 2 CC(C)=CCCC(C)=CC(=O) -2.06 3 c1ccc2c(c1)ccc3c2ccc4c5ccccc5ccc43 -7.87 4 c1ccsc1 -1.33