GETAWAYFingerprint#

class skfp.fingerprints.GETAWAYFingerprint(clip_val: float = 2147483647, sparse: bool = False, n_jobs: int | None = None, batch_size: int | None = None, verbose: int = 0)#

GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) fingerprint.

The implementation uses RDKit. This is a descriptor-based fingerprint, where bits are features related to various autocorrelations and information measures defined on Molecular Influence Matrix (MIM).

MIM matrix H is based on the centered atom coordinates (x,y,z) of a given conformer, and is therefore rotation invariant, and all features are independent of the conformer alignment. Diagonal elements of MIM matrix, called leverages, measure “influence” of each atom in determining the whole shape of the molecule. The influence matrix R, measuring strength of interatomic interactions, is then defined based on atom leverages and their spatial distances.

GETAWAY descriptors consist of 273 features (see [3] [4] [5] [6] for precise definitions):

  • 7 related to general molecule shape, defined only on H and R matrices

  • 7 sets of autocorrelation descriptors, each defined on topological distances (shortest paths) from 0 to 8 (inclusive)

Autocorrelation descriptors are unweighted, or weighted by: atomic mass, van der Waals volume, electronegativity, polarizability, ion polarity, and IState [1] [2]. Those weights are relative to the carbon, e.g. molecular weight is: MW(atom_type) / MW(carbon).

Typical correct values should be small, but it often results in NaN or infinity for some descriptors. Value clipping with clip_val parameter, feature selection, and/or imputation should be used.

Parameters:
  • clip_val (float or None, default=2147483647) – Value to clip results at, both positive and negative ones.The default value is the maximal value of 32-bit integer, but should often be set lower, depending on the application. None means that no clipping is applied.

  • sparse (bool, default=False) – Whether to return dense NumPy array, or sparse SciPy CSR array.

  • n_jobs (int, default=None) – The number of jobs to run in parallel. transform() is parallelized over the input molecules. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Scikit-learn documentation on n_jobs for more details.

  • batch_size (int, default=None) – Number of inputs processed in each batch. None divides input data into equal-sized parts, as many as n_jobs.

  • verbose (int, default=0) – Controls the verbosity when computing fingerprints.

n_features_out#

Number of output features, size of fingerprints.

Type:

int = 273

requires_conformers#

Value is always True, as this fingerprint is 3D based. It always requires molecules with conformers as inputs, with conf_id integer property set.

Type:

bool = True

References

Examples

>>> from skfp.fingerprints import GETAWAYFingerprint
>>> from skfp.preprocessing import MolFromSmilesTransformer, ConformerGenerator
>>> smiles = ["O", "CC", "[C-]#N", "CC=O"]
>>> fp = GETAWAYFingerprint()
>>> fp
GETAWAYFingerprint()
>>> mol_from_smiles = MolFromSmilesTransformer()
>>> mols = mol_from_smiles.transform(smiles)
>>> conf_gen = ConformerGenerator()
>>> mols = conf_gen.transform(mols)
>>> fp.transform(mols)  
array([[ 0.   ,    nan,  1.585, ...,  1.   , -0.   ,  1.   ],
       [ 0.   ,  0.   ,  2.763, ...,  1.   ,  0.   ,  1.   ],
       [ 0.   ,  0.   ,  1.   , ...,  1.   ,  0.   , 13.076],
       [ 4.755,  1.   ,  2.502, ..., -1.   , -0.   ,  2.467]])

Methods

fit(X[, y])

Unused, kept for Scikit-learn compatibility.

fit_transform(X[, y])

The same as .transform() method, kept for Scikit-learn compatibility.

get_feature_names_out([input_features])

Get output feature names for transformation.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_output(*[, transform])

Set output container.

set_params(**params)

Set the parameters of this estimator.

set_transform_request(*[, copy])

Request metadata passed to the transform method.

transform(X[, copy])

fit(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#

Unused, kept for Scikit-learn compatibility.

Parameters:
  • X (any) – Unused, kept for Scikit-learn compatibility.

  • y (any) – Unused, kept for Scikit-learn compatibility.

  • **fit_params (dict) – Unused, kept for Scikit-learn compatibility.

Return type:

self

fit_transform(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#

The same as .transform() method, kept for Scikit-learn compatibility.

Parameters:
  • X (any) – See .transform() method.

  • y (any) – See .transform() method.

  • **fit_params (dict) – Unused, kept for Scikit-learn compatibility.

Returns:

X_new – See .transform() method.

Return type:

any

get_feature_names_out(input_features=None)#

Get output feature names for transformation.

The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: [“class_name0”, “class_name1”, “class_name2”].

Parameters:

input_features (array-like of str or None, default=None) – Only used to validate feature names with the names seen in fit.

Returns:

feature_names_out – Transformed feature names.

Return type:

ndarray of str objects

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:

routing – A MetadataRequest encapsulating routing information.

Return type:

MetadataRequest

get_params(deep=True)#

Get parameters for this estimator.

Parameters:

deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params – Parameter names mapped to their values.

Return type:

dict

set_output(*, transform=None)#

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters:

transform ({"default", "pandas", "polars"}, default=None) –

Configure output of transform and fit_transform.

  • ”default”: Default output format of a transformer

  • ”pandas”: DataFrame output

  • ”polars”: Polars output

  • None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns:

self – Estimator instance.

Return type:

estimator instance

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:

**params (dict) – Estimator parameters.

Returns:

self – Estimator instance.

Return type:

estimator instance

set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') GETAWAYFingerprint#

Request metadata passed to the transform method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to transform if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to transform.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:

copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for copy parameter in transform.

Returns:

self – The updated object.

Return type:

object