GETAWAYFingerprint#
- class skfp.fingerprints.GETAWAYFingerprint(clip_val: float = 2147483647, sparse: bool = False, n_jobs: int | None = None, batch_size: int | None = None, verbose: int | dict = 0)#
GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) fingerprint.
The implementation uses RDKit. This is a descriptor-based fingerprint, where bits are features related to various autocorrelations and information measures defined on Molecular Influence Matrix (MIM).
MIM matrix H is based on the centered atom coordinates (x,y,z) of a given conformer, and is therefore rotation invariant, and all features are independent of the conformer alignment. Diagonal elements of MIM matrix, called leverages, measure “influence” of each atom in determining the whole shape of the molecule. The influence matrix R, measuring strength of interatomic interactions, is then defined based on atom leverages and their spatial distances.
GETAWAY descriptors consist of 273 features (see [3] [4] [5] [6] for precise definitions):
7 related to general molecule shape, defined only on H and R matrices
7 sets of autocorrelation descriptors, each defined on topological distances (shortest paths) from 0 to 8 (inclusive)
Autocorrelation descriptors are unweighted, or weighted by: atomic mass, van der Waals volume, electronegativity, polarizability, ion polarity, and IState [1] [2]. Those weights are relative to the carbon, e.g. molecular weight is: MW(atom_type) / MW(carbon).
Typical correct values should be small, but it often results in NaN or infinity for some descriptors. Value clipping with
clip_val
parameter, feature selection, and/or imputation should be used.- Parameters:
clip_val (float or None, default=2147483647) – Value to clip results at, both positive and negative ones.The default value is the maximal value of 32-bit integer, but should often be set lower, depending on the application.
None
means that no clipping is applied.sparse (bool, default=False) – Whether to return dense NumPy array, or sparse SciPy CSR array.
n_jobs (int, default=None) – The number of jobs to run in parallel.
transform()
is parallelized over the input molecules.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Scikit-learn documentation onn_jobs
for more details.batch_size (int, default=None) – Number of inputs processed in each batch.
None
divides input data into equal-sized parts, as many asn_jobs
.verbose (int or dict, default=0) – Controls the verbosity when computing fingerprints. If a dictionary is passed, it is treated as kwargs for
tqdm()
, and can be used to control the progress bar.
- n_features_out#
Number of output features, size of fingerprints.
- Type:
int = 273
- requires_conformers#
Value is always True, as this fingerprint is 3D based. It always requires molecules with conformers as inputs, with
conf_id
integer property set.- Type:
bool = True
References
Examples
>>> from skfp.fingerprints import GETAWAYFingerprint >>> from skfp.preprocessing import MolFromSmilesTransformer, ConformerGenerator >>> smiles = ["O", "CC", "[C-]#N", "CC=O"] >>> fp = GETAWAYFingerprint() >>> fp GETAWAYFingerprint()
>>> mol_from_smiles = MolFromSmilesTransformer() >>> mols = mol_from_smiles.transform(smiles) >>> conf_gen = ConformerGenerator() >>> mols = conf_gen.transform(mols) >>> fp.transform(mols) array([[ 0. , nan, 1.585, ..., 1. , -0. , 1. ], [ 0. , 0. , 2.763, ..., 1. , 0. , 1. ], [ 0. , 0. , 1. , ..., 1. , 0. , 13.076], [ 4.755, 1. , 2.502, ..., -1. , -0. , 2.467]])
Methods
fit
(X[, y])Unused, kept for Scikit-learn compatibility.
fit_transform
(X[, y])The same as
.transform()
method, kept for Scikit-learn compatibility.get_feature_names_out
([input_features])Get output feature names for transformation.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, copy])Request metadata passed to the
transform
method.transform
(X[, copy])- fit(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
Unused, kept for Scikit-learn compatibility.
- Parameters:
X (any) – Unused, kept for Scikit-learn compatibility.
y (any) – Unused, kept for Scikit-learn compatibility.
**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Return type:
self
- fit_transform(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
The same as
.transform()
method, kept for Scikit-learn compatibility.- Parameters:
X (any) – See
.transform()
method.y (any) – See
.transform()
method.**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Returns:
X_new – See
.transform()
method.- Return type:
any
- get_feature_names_out(input_features=None)#
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: [“class_name0”, “class_name1”, “class_name2”].
- Parameters:
input_features (array-like of str or None, default=None) – Only used to validate feature names with the names seen in fit.
- Returns:
feature_names_out – Transformed feature names.
- Return type:
ndarray of str objects
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') GETAWAYFingerprint #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
copy
parameter intransform
.- Returns:
self – The updated object.
- Return type:
object