load_lipophilicity#
- skfp.datasets.moleculenet.load_lipophilicity(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load and return the Lipophilicity dataset.
The task is to predict octanol/water distribution coefficient (logD) at pH 7.4 [1]. Targets are already log transformed, and are a unitless ratio.
Tasks
1
Task type
regression
Total samples
4200
Recommended split
scaffold
Recommended metric
RMSE
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D float vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References
Examples
>>> from skfp.datasets.moleculenet import load_lipophilicity >>> dataset = load_lipophilicity() >>> dataset (['Cn1c(CN2CCN(CC2)c3ccc(Cl)cc3)nc4ccccc14', ..., 'CN1C(=O)C=C(CCc2ccc3ccccc3c2)N=C1N'], array([ 3.54, -1.18, 3.69, ..., 2.1 , 2.65, 2.7 ]))
>>> dataset = load_lipophilicity(as_frame=True) >>> dataset.head() SMILES label 0 Cn1c(CN2CCN(CC2)c3ccc(Cl)cc3)nc4ccccc14 3.54 1 COc1cc(OC)c(cc1NC(=O)CSCC(=O)O)S(=O)(=O)N2C(C)... -1.18 2 COC(=O)[C@@H](N1CCc2sccc2C1)c3ccccc3Cl 3.69 3 OC[C@H](O)CN1C(=O)C(Cc2ccccc12)NC(=O)c3cc4cc(C... 3.37 4 Cc1cccc(C[C@H](NC(=O)c2cc(nn2C)C(C)(C)C)C(=O)N... 3.10