load_sider#
- skfp.datasets.moleculenet.load_sider(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load and return the SIDER (Side Effect Resource) dataset.
The task is to predict adverse drug reactions (ADRs) as drug side effects to 27 system organ classes in MedDRA classification [1] [2]. All tasks are binary.
Tasks
27
Task type
multitask classification
Total samples
1427
Recommended split
scaffold
Recommended metric
AUROC
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns “SMILES” and 27 label columns, with names corresponding to MedDRA system organ classes (see [1] for details). Otherwise, returns SMILES as list of strings,and labels as a NumPy array (2D integer array).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns “SMILES” and 27 label columns - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References
Examples
>>> from skfp.datasets.moleculenet import load_sider >>> dataset = load_sider() >>> dataset (['C(CNCCNCCNCCN)N', ..., 'CCC(=O)C(CC(C)N(C)C)(C1=CC=CC=C1)C2=CC=CC=C2'], array([[1, 1, 0, ..., 1, 1, 0], [0, 1, 0, ..., 0, 1, 0], [0, 1, 0, ..., 0, 1, 0], ..., [1, 1, 0, ..., 1, 1, 1], [0, 1, 0, ..., 1, 1, 1], [1, 1, 0, ..., 1, 1, 1]]))
>>> dataset = load_sider(as_frame=True) >>> dataset.head() SMILES ... Injury, poisoning and procedural complications 0 C(CNCCNCCNCCN)N ... 0 1 CC(C)(C)C1=CC(=C(C=C1NC(=O)C2=CNC3=CC=CC=C3C2=... ... 0 2 CC[C@]12CC(=C)[C@H]3[C@H]([C@@H]1CC[C@]2(C#C)O... ... 0 3 CCC12CC(=C)C3C(C1CC[C@]2(C#C)O)CCC4=CC(=O)CCC34 ... 1 4 C1C(C2=CC=CC=C2N(C3=CC=CC=C31)C(=O)N)O ... 0 ...