load_sider#
- skfp.datasets.moleculenet.load_sider(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load and return the SIDER (Side Effect Resource) dataset.
The task is to predict adverse drug reactions (ADRs) as drug side effects to 27 system organ classes in MedDRA classification [1] [2]. All tasks are binary.
Tasks
27
Task type
multitask classification
Total samples
1427
Recommended split
scaffold
Recommended metric
AUROC
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns “SMILES” and 27 label columns, with names corresponding to MedDRA system organ classes (see [1] for details). Otherwise, returns SMILES as list of strings,and labels as a NumPy array (2D integer array).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns “SMILES” and 27 label columns - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References