ct4_count_similarity#
- skfp.distances.ct4_count_similarity(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array) float #
Consonni–Todeschini 4 similarity for vectors of count values.
Computes the Consonni–Todeschini 4 similarity [1] [2] [3] for count data between two input arrays or sparse matrices, using the formula:
\[sim(a, b) = \frac{\log (1 + a \cdot b)}{\log (1 + \|a\|^2 + \|b\|^2 - a \cdot b)}\]The calculated similarity falls within the range \([0, 1]\). Passing all-zero vectors to this function results in similarity of 1.
- Parameters:
vec_a ({ndarray, sparse matrix}) – First count input array or sparse matrix.
vec_b ({ndarray, sparse matrix}) – Second count input array or sparse matrix.
- Returns:
similarity – CT4 similarity between
vec_a
andvec_b
.- Return type:
float
References
Examples
>>> from skfp.distances import ct4_count_similarity >>> import numpy as np >>> vec_a = np.array([7, 1, 1]) >>> vec_b = np.array([7, 1, 2]) >>> sim = ct4_count_similarity(vec_a, vec_b) >>> sim 0.9953140617275088
>>> from scipy.sparse import csr_array >>> vec_a = csr_array([[7, 1, 1]]) >>> vec_b = csr_array([[7, 1, 2]]) >>> sim = ct4_count_similarity(vec_a, vec_b) >>> sim 0.9953140617275088