multioutput_auprc_score#
- skfp.metrics.multioutput_auprc_score(y_true: ndarray | list, y_score: ndarray | list, *args, **kwargs) float #
Area Under Precision-Recall Curve (AUPRC / AUC PRC / average precision) score for multioutput problems.
Returns the average value over all tasks. Missing values in target labels are ignored. Also supports single-task evaluation.
Any additional arguments are passed to the underlying
average_precision_score
function, see scikit-learn documentation for more information.- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.
y_score (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target scores, i.e. probability of the class with the greater label for each output** of the classifier.
*args – Any additional parameters for the underlying scikit-learn metric function.
**kwargs – Any additional parameters for the underlying scikit-learn metric function.
- Returns:
score – Average AUPRC value over all tasks.
- Return type:
float
Examples
>>> import numpy as np >>> from skfp.metrics import multioutput_auprc_score >>> y_true = [[0, 0], [1, 1]] >>> y_score = [[0.75, 0.0], [0.9, 0.0]] >>> multioutput_auprc_score(y_true, y_score) 0.75 >>> y_true = [[0, 0], [1, np.nan], [np.nan, 1]] >>> y_score = [[0.75, 0.0], [0.25, 0.0], [0.0, 0.25]] >>> multioutput_auprc_score(y_true, y_score) 0.75