dice_count_similarity#

skfp.distances.dice_count_similarity(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array) float#

Dice similarity for vectors of count values.

Computes the Dice similarity [1] [2] [3] for count data between two input arrays or sparse matrices using the formula:

\[sim(vec_a, vec_b) = \frac{2 \cdot vec_a \cdot vec_b}{\|vec_a\|^2 + \|vec_b\|^2}\]

The calculated similarity falls within the range [0, 1]. Passing all-zero vectors to this function results in a similarity of 1.

Parameters:
  • vec_a ({ndarray, sparse matrix}) – First count input array or sparse matrix.

  • vec_b ({ndarray, sparse matrix}) – Second count input array or sparse matrix.

Returns:

similarity – Dice similarity between vec_a and vec_b.

Return type:

float

References

Examples

>>> from skfp.distances import dice_count_similarity
>>> import numpy as np
>>> vec_a = np.array([7, 1, 1])
>>> vec_b = np.array([7, 1, 2])
>>> sim = dice_count_similarity(vec_a, vec_b)
>>> sim
0.9904761904761905
>>> from skfp.distances import dice_count_similarity
>>> from scipy.sparse import csr_array
>>> vec_a = csr_array([[7, 1, 1]])
>>> vec_b = csr_array([[7, 1, 2]])
>>> sim = dice_count_similarity(vec_a, vec_b)
>>> sim
0.9904761904761905