RDKitFingerprint#
- class skfp.fingerprints.RDKitFingerprint(fp_size: int = 2048, min_path: int = 1, max_path: int = 7, use_pharmacophoric_invariants: bool = False, use_bond_order: bool = True, num_bits_per_feature: int = 2, linear_paths_only: bool = False, count_simulation: bool = False, count: bool = False, sparse: bool = False, n_jobs: int | None = None, batch_size: int | None = None, verbose: int = 0)#
RDKit fingerprint.
This fingerprint is an RDKit original [1]. This is a hashed fingerprint, where fragments are created from small subgraphs on the molecular graph.
For a given molecule, all paths between
min_path
andmax_path
(inclusive) are extracted and hashed, based on bond invariants (see below). Those are any subgraphs, unlesslinear_paths_only
is set to True. Note that all explicit atoms, including hydrogens if present, are used.Each subgraph is hashed. Based on this hash value,
nBitsPerHash
pseudorandom numbers are generated and used to set bits in the resulting fingerprint. Finally, it is folded tofp_size
length.Subgraphs are identified based on bonds constituting them. Bonds invariants (types, features) take into consideration:
atomic numbers and aromaticity of bonded atoms
degrees of bonded atoms
bond type/order (single, double, triple, aromatic)
For more details on fingerprints of this type, see Daylight documentation [2].
- Parameters:
fp_size (int, default=2048) – Size of output vectors, i.e. number of bits for each fingerprint. Must be positive.
min_path (int, default=1) – Minimal length of paths used, in bonds. Default value means that at least 2-atom subgraphs are used.
max_path (int, default=7) – Maximal length of paths used, in bonds.
use_pharmacophoric_invariants (bool, default=False) – Whether to use pharmacophoric invariants (atom types) instead of default ones. They are the same as in the FCFP fingerprint: Donor, Acceptor, Aromatic, Halogen, Basic, Acidic.
use_bond_order (bool, default=True) – Whether to take bond order (type) into consideration when hashing subgraphs. False means that only graph topology (subgraph shape) is used.
num_bits_per_feature (int, default=2) – How many bits to set for each subgraph.
linear_paths_only (bool, default=False) – Whether to use only linear paths, instead of any subgraphs.
count_simulation (bool, default=True) – Whether to use count simulation for approximating feature counts [3].
sparse (bool, default=False) – Whether to return dense NumPy array, or sparse SciPy CSR array.
n_jobs (int, default=None) – The number of jobs to run in parallel.
transform()
is parallelized over the input molecules.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Scikit-learn documentation onn_jobs
for more details.batch_size (int, default=None) – Number of inputs processed in each batch.
None
divides input data into equal-sized parts, as many asn_jobs
.verbose (int, default=0) – Controls the verbosity when computing fingerprints.
- n_features_out#
Number of output features, size of fingerprints. Equal to
fp_size
.- Type:
int
- requires_conformers#
This fingerprint uses only 2D molecular graphs and does not require conformers.
- Type:
bool = False
See also
LayeredFingerprint
Related fingerprint, but uses different atom and bond types to set multiple bits.
References
Examples
>>> from skfp.fingerprints import RDKitFingerprint >>> smiles = ["O", "CC", "[C-]#N", "CC=O"] >>> fp = RDKitFingerprint() >>> fp RDKitFingerprint()
>>> fp.transform(smiles) array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)
Methods
fit
(X[, y])Unused, kept for Scikit-learn compatibility.
fit_transform
(X[, y])The same as
.transform()
method, kept for Scikit-learn compatibility.get_feature_names_out
([input_features])Get output feature names for transformation.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, copy])Request metadata passed to the
transform
method.transform
(X[, copy])- fit(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
Unused, kept for Scikit-learn compatibility.
- Parameters:
X (any) – Unused, kept for Scikit-learn compatibility.
y (any) – Unused, kept for Scikit-learn compatibility.
**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Return type:
self
- fit_transform(X: Sequence[str | Mol], y: Any | None = None, **fit_params)#
The same as
.transform()
method, kept for Scikit-learn compatibility.- Parameters:
X (any) – See
.transform()
method.y (any) – See
.transform()
method.**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Returns:
X_new – See
.transform()
method.- Return type:
any
- get_feature_names_out(input_features=None)#
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: [“class_name0”, “class_name1”, “class_name2”].
- Parameters:
input_features (array-like of str or None, default=None) – Only used to validate feature names with the names seen in fit.
- Returns:
feature_names_out – Transformed feature names.
- Return type:
ndarray of str objects
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') RDKitFingerprint #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
copy
parameter intransform
.- Returns:
self – The updated object.
- Return type:
object