simpson_binary_similarity#
- skfp.distances.simpson_binary_similarity(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array) float #
Simpson similarity for vectors of binary values.
Computes the Simpson similarity [1] (also known as asymmetric similarity [2] [3] or overlap coefficient [4]) for binary data between two input arrays or sparse matrices using the formula:
\[sim(a, b) = \frac{|a \cap b|}{\min(|a|, |b|)}\]The calculated similarity falls within the range \([0, 1]\). If any of the vectors is all-zeros, it results in a similarity of 0.
- Parameters:
vec_a ({ndarray, sparse matrix}) – First binary input array or sparse matrix.
vec_b ({ndarray, sparse matrix}) – Second binary input array or sparse matrix.
- Returns:
similarity – Simpson similarity between
vec_a
andvec_b
.- Return type:
float
References
Examples
>>> from skfp.distances import simpson_binary_similarity >>> import numpy as np >>> vec_a = np.array([1, 0, 1]) >>> vec_b = np.array([1, 0, 1]) >>> sim = simpson_binary_similarity(vec_a, vec_b) >>> sim 1.0
>>> from scipy.sparse import csr_array >>> vec_a = csr_array([[1, 0, 1]]) >>> vec_b = csr_array([[1, 0, 1]]) >>> sim = simpson_binary_similarity(vec_a, vec_b) >>> sim 1.0