harris_lahey_binary_similarity#
- skfp.distances.harris_lahey_binary_similarity(vec_a: ndarray | csr_array, vec_b: ndarray | csr_array, normalized: bool = False) float #
Harris-Lahey similarity for vectors of binary values.
Computes the Harris-Lahey similarity [1] [2] [3] for binary data between two input arrays or sparse matrices, using the formula:
\[sim(x, y) = \frac{a * (2d + b + c)}{2 * (a + b + c)} + \frac{d * (2a + b + c)}{2 * (b + c + d)}\]where \(a\), \(b\), \(c\) and \(d\) correspond to the number of bit relations between the two vectors:
\(a\) - both are 1 (\(|x \cap y|\), common “on” bits)
\(b\) - \(x\) is 1, \(y\) is 0
\(c\) - \(x\) is 0, \(y\) is 1
\(d\) - both are 0
The calculated similarity falls within the range \([0, n]\), where \(n\) is the length of vectors. Use
normalized
argument to scale the similarity to range \([0, 1]\). Passing all-zero or all-one vectors to this function results in a similarity of \(n\).- Parameters:
vec_a ({ndarray, sparse matrix}) – First binary input array or sparse matrix.
vec_b ({ndarray, sparse matrix}) – Second binary input array or sparse matrix.
normalized (bool, default=False) – Whether to divide the resulting similarity by length of vectors (their number of elements), to normalize values to range
[0, 1]
.
- Returns:
similarity – Harris-Lahey similarity between
vec_a
andvec_b
.- Return type:
float
References
Examples
>>> from skfp.distances import harris_lahey_binary_similarity >>> import numpy as np >>> vec_a = np.array([1, 0, 1]) >>> vec_b = np.array([1, 0, 1]) >>> sim = harris_lahey_binary_similarity(vec_a, vec_b) >>> sim 3.0
>>> from scipy.sparse import csr_array >>> vec_a = csr_array([[1, 0, 1]]) >>> vec_b = csr_array([[1, 0, 1]]) >>> sim = harris_lahey_binary_similarity(vec_a, vec_b) >>> sim 3.0