multioutput_spearman_correlation#
- skfp.metrics.multioutput_spearman_correlation(y_true: ndarray | list, y_pred: ndarray | list, *args, **kwargs) float #
Spearman correlation for multioutput problems.
Returns the average value over all tasks. Missing values in target labels are ignored. Also supports single-task evaluation.
Any additional arguments are passed to the underlying
spearman_correlation
function, seespearman_correlation()
for more information.- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.
*args – Any additional parameters for the underlying scikit-learn metric function.
**kwargs – Any additional parameters for the underlying scikit-learn metric function.
- Returns:
score – Average Spearman correlation value over all tasks.
- Return type:
float
Examples
>>> import numpy as np >>> from skfp.metrics import multioutput_spearman_correlation >>> y_true = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]) >>> y_pred = np.array([[1, 4], [2, 3], [3, 2], [4, 1]]) >>> multioutput_spearman_correlation(y_true, y_pred) 0.0 >>> y_true = np.array([[1, 1], [np.nan, 2], [2, np.nan], [3, 3]]) >>> y_pred = np.array([[1, 1], [0, 3], [3, 0], [4, 2]]) >>> multioutput_spearman_correlation(y_true, y_pred) 0.75