load_hia_hou#
- skfp.datasets.tdc.adme.load_hia_hou(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load the Human Intestinal Absorption dataset.
The task is to predict whether a drug is well absorbed via the human intestine. It is relevant for oral drug design [1] [2].
This dataset is a part of “absorption” subset of ADME tasks.
Tasks
1
Task type
classification
Total samples
578
Recommended split
scaffold
Recommended metric
AUROC
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References