MolStandardizer#
- class skfp.preprocessing.MolStandardizer(largest_fragment_only: bool = False, n_jobs: int | None = None, verbose: int = 0)#
Performs common molecule standardization operations.
Applies the following cleanup transformations to the inputs: - create RDKit Mol objects, if SMILES strings are passed - sanitize [1] (performs basic validity checks) - if
largest_fragment_only
, select the largest fragment for further processing - remove hydrogens - disconnect metal atoms - normalize (transform functional groups to normal form) - reionizeSee [1] [2] [3] [4] [5] for details, rationale and alternatives. Note that there is no one-size-fits-all solution, and here we use pretty minimalistic, most common steps. This class by design does not allow much parametrization, and for custom purposes you should build the pipeline yourself.
New molecules are always returned, and any set properties are not kept, as this should normally be the first step in a pipeline.
- Parameters:
largest_fragment_only (bool, default=False) – Whether to select only the largest fragment from each molecule.
n_jobs (int, default=None) – The number of jobs to run in parallel.
transform()
is parallelized over the input molecules.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Scikit-learn documentation onn_jobs
for more details.verbose (int, default=0) – Controls the verbosity when standardizing molecules. By default, all warnings are turned off.
References
Examples
>>> from skfp.preprocessing import MolStandardizer >>> smiles = ["O", "CC", "[C-]#N", "CC=O"] >>> standardizer = MolStandardizer() >>> standardizer MolStandardizer()
>>> standardizer.transform(smiles) [<rdkit.Chem.rdchem.Mol>, <rdkit.Chem.rdchem.Mol>, <rdkit.Chem.rdchem.Mol>, <rdkit.Chem.rdchem.Mol>]
Methods
fit
(X[, y])Unused, kept for Scikit-learn compatibility.
fit_transform
(X[, y])The same as
.transform()
method, kept for Scikit-learn compatibility.Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, copy])Request metadata passed to the
transform
method.transform
(X[, copy])Standardize molecule structures.
- fit(X, y=None, **fit_params)#
Unused, kept for Scikit-learn compatibility.
- Parameters:
X (any) – Unused, kept for Scikit-learn compatibility.
y (any) – Unused, kept for Scikit-learn compatibility.
**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Return type:
self
- fit_transform(X, y=None, **fit_params)#
The same as
.transform()
method, kept for Scikit-learn compatibility.- Parameters:
X (any) – See
.transform()
method.y (any) – See
.transform()
method.**fit_params (dict) – Unused, kept for Scikit-learn compatibility.
- Returns:
X_new – See
.transform()
method.- Return type:
any
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params – Parameter names mapped to their values.
- Return type:
dict
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') MolStandardizer #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
copy
parameter intransform
.- Returns:
self – The updated object.
- Return type:
object
- transform(X: Sequence[str | Mol], copy: bool = True) list[Mol] #
Standardize molecule structures.
- Parameters:
X ({sequence, array-like} of shape (n_samples,)) – Sequence containing SMILES strings or RDKit
Mol
objects.copy (bool, default=True) – Copy the input X or not. In contrast to most classes, input molecules are copied by default, since RDKit standardizes their structure in place.
- Returns:
X – List with RDKit
Mol
objects.- Return type:
list of shape (n_samples_conf_gen,)