load_vdss_lombardo#

skfp.datasets.tdc.adme.load_vdss_lombardo(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray#

Load the Volume of Distribution at Steady State dataset.

The task is to predict the volume of distribution at steady state (VDss) that measures the degree of drug’s concentration in body tissue compared to concentration in blood [1] [2].

This dataset is a part of “distribution” subset of ADME tasks.

Tasks

1

Task type

regression

Total samples

1130

Recommended split

scaffold

Recommended metric

Spearman correlation

Parameters:
  • data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If None, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.

  • as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).

  • verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.

Returns:

data – Depending on the as_frame argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)

Return type:

pd.DataFrame or tuple(list[str], np.ndarray)

References