load_vdss_lombardo#
- skfp.datasets.tdc.adme.load_vdss_lombardo(data_dir: str | PathLike | None = None, as_frame: bool = False, verbose: bool = False) DataFrame | tuple[list[str]] | ndarray #
Load the Volume of Distribution at Steady State dataset.
The task is to predict the volume of distribution at steady state (VDss) that measures the degree of drug’s concentration in body tissue compared to concentration in blood [1] [2].
This dataset is a part of “distribution” subset of ADME tasks.
Tasks
1
Task type
regression
Total samples
1130
Recommended split
scaffold
Recommended metric
Spearman correlation
- Parameters:
data_dir ({None, str, path-like}, default=None) – Path to the root data directory. If
None
, currently set scikit-learn directory is used, by default $HOME/scikit_learn_data.as_frame (bool, default=False) – If True, returns the raw DataFrame with columns: “SMILES”, “label”. Otherwise, returns SMILES as list of strings, and labels as a NumPy array (1D integer binary vector).
verbose (bool, default=False) – If True, progress bar will be shown for downloading or loading files.
- Returns:
data – Depending on the
as_frame
argument, one of: - Pandas DataFrame with columns: “SMILES”, “label” - tuple of: list of strings (SMILES), NumPy array (labels)- Return type:
pd.DataFrame or tuple(list[str], np.ndarray)
References